	Term	Topic	Learning Outcomes	Assessment
$\begin{aligned} & \text { ๑ } \\ & \stackrel{4}{\overleftarrow{\circ}} \\ & \stackrel{\text { O}}{7} \end{aligned}$	Spring 2	Unit 6: Angles - Parallel Lines	- Estimate sizes of angles; - Measure angles using a protractor; - Use geometric language appropriately; - Use letters to identify points, lines and angles; - Use two-letter notation for a line and three-letter notation for an angle; - Describe angles as turns and in degrees and understand clockwise and anticlockwise; - Know that there are 360° in a full turn, 180° in a half turn and 90° in a quarter turn; - Identify a line perpendicular to a given line on a diagram and use their properties; - Identify parallel lines on a diagram and use their properties; - Find missing angles using properties of corresponding and alternate angles; - Understand and use the angle properties of parallel lines. - Recall the properties and definitions of special types of quadrilaterals, including symmetry properties; - List the properties of each special type of quadrilateral, or identify (name) a given shape; - Draw sketches of shapes; - Classify quadrilaterals by their geometric properties and name all quadrilaterals that have a specific property; - Identify quadrilaterals from everyday usage; - Given some information about a shape on coordinate axes, complete the shape; Understand and use the angle properties of quadrilaterals; - Use the fact that angle sum of a quadrilateral is 360°; - Recall and use properties of angles at a point, angles at a point on a straight line, right angles, and vertically opposite angles; - Distinguish between scalene, equilateral, isosceles and right-angled triangles; - Derive and use the sum of angles in a triangle; - Find a missing angle in a triangle, using the angle sum of a triangle is 180°; - Understand and use the angle properties of triangles, use the symmetry property of isosceles triangle to show that base angles are equal; - Use the side/angle properties of isosceles and equilateral triangles; - Understand and use the angle properties of intersecting lines; - Understand a proof that the exterior angle of a triangle is equal to the sum of the interior angles at the other two vertices; Use geometrical language appropriately	

Unit 6: Polygons

Summer
1

- Recognise and name pentagons, hexagons, heptagons, octagons and decagons;
- Understand 'regular' and 'irregular' as applied to polygons;
- Use the sum of angles of irregular polygons;
- Calculate and use the sums of the interior angles of polygons;
- Calculate and use the angles of regular polygons;
- Use the sum of the interior angles of an n-sided polygon;
- Use the sum of the exterior angles of any polygon is 360°;
- Use the sum of the interior angle and the exterior angle is 180°;
- Identify shapes which are congruent (by eye);
- Explain why some polygons fit together and others do not;
- Specify the problem and:
- plan an investigation;
- decide what data to collect and what statistical analysis is needed;
- consider fairness;
- Recognise types of data: primary secondary, quantitative and qualitative;
- Identify which primary data they need to collect and in what format, including grouped data;
- Collect data from a variety of suitable primary and secondary sources;
- Understand how sources of data may be biased and explain why a sample may not be representative of a whole population;
- Understand sample and population.
- Calculate the mean, mode, median and range for discrete data;
- Interpret and find a range of averages as follows:

Mathematics Department

Key stage 4:Foundation

- median, mean and range from a (discrete) frequency table;
- range, modal class, interval containing the median, and estimate of the mean from a grouped data frequency table;
- mode and range from a bar chart;
- median, mode and range from stem and leaf diagrams;
- mean from a bar chart;
- Understand that the expression 'estimate' will be used where appropriate, when finding the mean of grouped data using mid-interval values;
- Compare the mean, median, mode and range (as appropriate) of two distributions using bar charts, dual bar charts, pictograms and back-to-back stem and leaf;
- Recognise the advantages and disadvantages between measures of average.
- Indicate given values on a scale, including decimal value;
- Know that measurements using real numbers depend upon the choice of unit;
- Convert between units of measure within one system, including time and metric units to metric units of length, area and volume and capacity e.g. $1 \mathrm{ml}=1 \mathrm{~cm}^{3}$;
- Make sensible estimates of a range of measures in everyday settings;

Summer 2

Unit 8: Perimeter, Area and Volume

- Measure shapes to find perimeters and areas using a range of scales;
- Find the perimeter of
- rectangles and triangles;
- parallelograms and trapezia;
- compound shapes;
- Recall and use the formulae for the area of a triangle and rectangle;
- Find the area of a trapezium and recall the formula;
- Find the area of a parallelogram;

- Calculate areas and perimeters of compound shapes made from triangles and rectangles;
- Estimate surface areas by rounding measurements to 1 significant figure;
- Find the surface area of a prism;
- Find surface area using rectangles and triangles;
- Identify and name common solids: cube, cuboid, cylinder, prism, pyramid, sphere and cone;
- Sketch nets of cuboids and prisms;
- Recall and use the formula for the volume of a cuboid;
- Find the volume of a prism, including a triangular prism, cube and cuboid;
- Calculate volumes of right prisms and shapes made from cubes and cuboids;
- Estimate volumes etc by rounding measurements to 1 significant figure
- Estimate sizes of angles;
- Measure angles using a protractor;
- Use geometric language appropriately;
- Use letters to identify points, lines and angles;
- Use two-letter notation for a line and three-letter notation for an angle;
- Describe angles as turns and in degrees and understand clockwise and anticlockwise;
- Know that there are 360° in a full turn, 180° in a half turn and 90° in a quarter turn;
- Identify a line perpendicular to a given line on a diagram and use their properties;
- Identify parallel lines on a diagram and use their properties;
- Find missing angles using properties of corresponding and alternate angles;
- Understand and use the angle properties of parallel lines.
- Recall the properties and definitions of special types of quadrilaterals, including symmetry properties;
- List the properties of each special type of quadrilateral, or identify (name) a given shape;
- Draw sketches of shapes;
- Classify quadrilaterals by their geometric properties and name all quadrilaterals that have a specific property;
- Identify quadrilaterals from everyday usage;

Mathematics Department

Key stage 4:Foundation

Mathematics Department

Unit 7: Statistics - Averages

- Specify the problem and:
- plan an investigation;
- decide what data to collect and what statistical analysis is needed;
- consider fairness;
- Recognise types of data: primary secondary, quantitative and qualitative;
- Identify which primary data they need to collect and in what format, including grouped data;
- Collect data from a variety of suitable primary and secondary sources;
- Understand how sources of data may be biased and explain why a sample may not be representative of a whole population;
- Understand sample and population.
- Calculate the mean, mode, median and range for discrete data;
- Interpret and find a range of averages as follows:

End of Unit Test

- median, mean and range from a (discrete) frequency table;
- range, modal class, interval containing the median, and estimate of the mean from a grouped data frequency table;
- mode and range from a bar chart;
- median, mode and range from stem and leaf diagrams;
- mean from a bar chart;
- Understand that the expression 'estimate' will be used where appropriate, when finding the mean of grouped data using mid-interval values;
- Compare the mean, median, mode and range (as appropriate) of two distributions using bar charts, dual bar charts, pictograms and back-to-back stem and leaf;
- Recognise the advantages and disadvantages between measures of average.

Unit 8: Perimeter, Area and Volume

- Indicate given values on a scale, including decimal value;
- Know that measurements using real numbers depend upon the choice of unit;
- Convert between units of measure within one system, including time and metric units to metric units of length, area and volume and capacity e.g. $1 \mathrm{ml}=1 \mathrm{~cm}^{3}$;
- Make sensible estimates of a range of measures in everyday settings;
- Measure shapes to find perimeters and areas using a range of scales;
- Find the perimeter of - rectangles and triangles;
- parallelograms and trapezia;
- compound shapes;
- Recall and use the formulae for the area of a triangle and rectangle;
- Find the area of a trapezium and recall the formula;
- Find the area of a parallelogram;
- Calculate areas and perimeters of compound shapes made from triangles and rectangles;
- Estimate surface areas by rounding measurements to 1 significant figure;
- Find the surface area of a prism;
- Find surface area using rectangles and triangles;
- Identify and name common solids: cube, cuboid, cylinder, prism, pyramid, sphere and cone;
- Sketch nets of cuboids and prisms;
- Recall and use the formula for the volume of a cuboid;
- Find the volume of a prism, including a triangular prism, cube and cuboid;
- Calculate volumes of right prisms and shapes made from cubes and cuboids;
- Estimate volumes etc by rounding measurements to 1 significant figure

End of Unit Test

Mathematics Department

P

- Use input/output diagrams;
- Draw, label and scale axes;
- Use axes and coordinates to specify points in all four quadrants in 2D;
- Identify points with given coordinates and coordinates of a given point in all four quadrants;
- Find the coordinates of points identified by geometrical information in 2D (all four quadrants);
- Find the coordinates of the midpoint of a line segment; Read values from straight-line graphs for real-life situations;
- Draw straight line graphs for real-life situations, including ready reckoner graphs, conversion graphs, fuel bills graphs, fixed charge and cost per unit;
- Draw distance-time graphs and velocity-time graphs;
- Work out time intervals for graph scales;
- Interpret distance-time graphs, and calculate: the speed of individual sections, total distance and total time;
- Interpret information presented in a range of linear and non-linear graphs;
- Interpret graphs with negative values on axes; Interpret gradient as the rate of change in distance-time and speed-time graphs, graphs of containers filling and emptying, and unit price graphs.

Term

- Use function machines to find coordinates (i.e. given the input x, find the output y);
- Plot and draw graphs of $y=a, x=a, y=x$ and $y=-$ x;
- Recognise straight-line graphs parallel to the axes;

Spring

- Recognise that equations of the form $y=m x+c$ correspond to straight-line graphs in the coordinate plane;
- Plot and draw graphs of straight lines of the form $y=$ $m x+c$ using a table of values;
- Sketch a graph of a linear function, using the gradient and y-intercept;
- Identify and interpret gradient from an equation $y=$ $m x+c$;
- Identify parallel lines from their equations;
- Plot and draw graphs of straight lines in the form $a x+$ $b y=c$;
- Find the equation of a straight line from a graph;
- Find the equation of the line through one point with a given gradient;
- Find approximate solutions to a linear equation from a graph;
- Find the gradient of a straight line from real-life graphs too.
Identify congruent shapes by eye;
- Understand that rotations are specified by a centre, an angle and a direction of rotation;
- Find the centre of rotation, angle and direction of rotation and describe rotations fully using the angle, direction of turn, and centre;
- Rotate and draw the position of a shape after rotation about the origin or any other point including rotations on a coordinate grid;
- Identify correct rotations from a choice of diagrams;
- Understand that translations are specified by a distance and direction using a vector;
Unit 10: Transformations
- Translate a given shape by a vector;
- Use column vectors to describe and transform 2D shapes using single translations on a coordinate grid;
- Understand that distances and angles are preserved under rotations and translations, so that any figure is congruent under either of these transformations;
- Understand that reflections are specified by a mirror line;
- Identify correct reflections from a choice of diagrams;
- Identify the equation of a line of symmetry; on coordinate grids) with vertical, horizontal and diagonal mirror lines;
- Describe reflections on a coordinate grid;
- Scale a shape on a grid (without a centre specified);
- Understand that an enlargement is specified by a centre and a scale factor;
- Enlarge a given shape using $(0,0)$ as the centre of enlargement, and enlarge shapes with a centre other than (0,0);
- Find the centre of enlargement by drawing;
- Describe and transform 2D shapes using enlargements by:
- a positive integer \& fractional scale factor;
- Identify the scale factor of an enlargement of a shape as the ratio of the lengths of two corresponding sides, simple integer scale factors, or simple fractions;
- Understand that distances and angles are preserved under reflections, so that any figure is congruent under this transformation;
- Understand that similar shapes are enlargements of each other and angles are preserved - define similar in this unit;
- Describe and transform 2D shapes using combined rotations, reflections, translations, or enlargements.
- Understand and express the division of a quantity into a of number parts as a ratio;
- Write ratios in their simplest form;
- Write/interpret a ratio to describe a situation;
- Share a quantity in a given ratio including three-part ratios;
- Solve a ratio problem in context:
- use a ratio to find one quantity when the other is known;
- use a ratio to compare a scale model to a real-life object;
- use a ratio to convert between measures and currencies;
- problems involving mixing, e.g. paint colours, cement and drawn conclusions;
- Compare ratios;
- Write ratios in form 1:m or $m: 1$;
- Write a ratio as a fraction;

Mathematics Department

	Term	Topic	Learning Outcomes	Assessment
	Summer 1	Unit 11: Proportion	- Understand and use proportion as equality of ratios; - Solve word problems involving direct and indirect proportion; - Work out which product is the better buy; - Scale up recipes; - Convert between currencies; - Find amounts for 3 people when amount for 1 given; - Solve proportion problems using the unitary method; - Recognise when values are in direct proportion by reference to the graph form; - Understand inverse proportion: as x increases, y decreases (inverse graphs done in later unit); - Recognise when values are in direct proportion by reference to the graph form; - Understand direct proportion ---> relationship $y=$ $k x$.	End of Unit Test
		Unit 12: Pythagoras and Trigonometry	- Understand, recall and use Pythagoras' Theorem in 2D, including leaving answers in surd form and being able to justify if a triangle is right-angled or not; - Calculate the length of the hypotenuse and of a shorter side in a right-angled triangle, including decimal lengths and a range of units; - Apply Pythagoras' Theorem with a triangle drawn on a coordinate grid; - Calculate the length of a line segment $A B$ given pairs of points;	End of Unit Test

Mathematics Department

Key stage 4:Foundation

Unit 13: Probability

- Understand, use and recall the trigonometric ratios sine, cosine and tan, and apply them to find angles and lengths in general triangles in 2D figures;
- Use the trigonometric ratios to solve 2D problems including angles of elevation and depression;
- Round answers to appropriate degree of accuracy, either to a given number of significant figures or decimal places, or make a sensible decision on rounding in context of question;
- Know the exact values of $\sin \theta$ and $\cos \theta$ for $\theta=0^{\circ}$, $30^{\circ}, 45^{\circ}, 60^{\circ}$ and 90°; know the exact value of \tan θ for $\theta=0^{\circ}, 30^{\circ}, 45^{\circ}$ and 60°.
- Distinguish between events which are impossible, unlikely, even chance, likely, and certain to occur;
- Mark events and/or probabilities on a probability scale of 0 to 1;
- Write probabilities in words or fractions, decimals and percentages;
- Find the probability of an event happening using theoretical probability;
- Use theoretical models to include outcomes using dice, spinners, coins;
- List all outcomes for single events systematically;
- Work out probabilities from frequency tables, frequency trees, and two way tables;
- Record outcomes of probability experiments in tables;
- Add simple probabilities;
- Identify different mutually exclusive outcomes and know that the sum of the probabilities of all outcomes is 1 ;
- Using $1-p$ as the probability of an event not occurring where p is the probability of the event occurring;
- Find a missing probability from a list or table including algebraic terms;
- Find the probability of an event happening using relative frequency;
- Estimate the number of times an event will occur, given the probability and the number of trials - for both experimental and theoretical probabilities;
- List all outcomes for combined events systematically;
- Use and draw sample space diagrams;
- Work out probabilities from Venn diagrams to represent real-life situations and also 'abstract' sets of numbers/values;
- Use union and intersection notation;
- Compare experimental data and theoretical probabilities;
- Compare relative frequencies from samples of different sizes;
- Find the probability of successive events, such as several throws of a single dice;
- Use tree diagrams to calculate the probability of two independent events;
- Use tree diagrams to calculate the probability of two
- dependent events

End of year assessment
This will include all topics covered

Mathematics Department

Key stage 4:Foundation

Unit 15: Plans and Elevations

Unit 15: Constructions, Loci and Bearings

- Understand clockwise and anticlockwise;
- Draw circles and arcs to a given radius or given the diameter;
- Measure and draw lines, to the nearest mm;
- Measure and draw angles, to the nearest degree;
- Know and use compass directions;
- Draw sketches of 3D solids;
- Know the terms face, edge and vertex;
- Identify and sketch planes of symmetry of 3D solids;
- Use isometric grids to draw 2D representations of 3D solids;
- Make accurate drawings of triangles and other 2D shapes using a ruler and a protractor;
- Construct diagrams of everyday 2D situations involving rectangles, triangles, perpendicular and parallel lines;
- Understand and draw front and side elevations and plans of shapes made from simple solids;
- Given the front and side elevations and the plan of a solid, draw a sketch of the 3D solid.
- Understand congruence, as two shapes that are the same size and shape;
- Visually identify shapes which are congruent;
- Use straight edge and a pair of compasses to do standard constructions:
- understand, from the experience of constructing them, that triangles satisfying SSS, SAS, ASA and RHS are unique, but SSA triangles are not;

Mock Exams

- construct the perpendicular bisector of a given line;
- construct the perpendicular from a point to a line;
- construct the bisector of a given angle;
- construct angles of $90^{\circ}, 45^{\circ}$;
- Draw and construct diagrams from given instructions, including the following:
- a region bounded by a circle and an intersecting line;
- a given distance from a point and a given distance from a line;
- equal distances from two points or two line segments;
- regions may be defined by 'nearer to' or 'greater than';
- Find and describe regions satisfying a combination of loci;
- Use constructions to solve loci problems (2D only);
- Use and interpret maps and scale drawings;
- Estimate lengths using a scale diagram;
- Make an accurate scale drawing from a diagram;
- Use three-figure bearings to specify direction;
- Mark on a diagram the position of point B given its bearing from point A;
- Give a bearing between the points on a map or scaled plan;
- Given the bearing of a point A from point B, work out the bearing of B from A;
- Use accurate drawing to solve bearings problems;
- Solve locus problems including bearings.

	CHURCH STRETTON SCHOOL		Mathematics Department	Key stage 4:Foundation
	Term	Topic	Learning Outcomes	Assessment
	Autumn 2	Unit 16: Quadratic Equations	- Define a 'quadratic' expression; - Multiply together two algebraic expressions with brackets; - Square a linear expression, e.g. $(x+1)^{2}$; - Factorise quadratic expressions of the form $x^{2}+b x+$ c; - Factorise a quadratic expression $x^{2}-a^{2}$ using the difference of two squares; - Solve quadratic equations by factorising; - Find the roots of a quadratic function algebraically	
$\begin{aligned} & \text { 궁 } \\ & \stackrel{y}{\circ} \\ & \underset{\sim}{3} \end{aligned}$		Unit 16: Quadratic Graphs	- Generate points and plot graphs of simple quadratic functions, then more general quadratic functions; - Identify the line of symmetry of a quadratic graph; - Find approximate solutions to quadratic equations using a graph; - Interpret graphs of quadratic functions from real-life problems; - Identify and interpret roots, intercepts and turning points of quadratic graphs	
	Spring 1	Unit 17: Advanced Measures	- Recall the definition of a circle and identify, name and draw parts of a circle including tangent, chord and segment; - Recall and use formulae for the circumference of a circle and the area enclosed by a circle circumference of a circle $=2 \pi r=\pi d$, area of a circle $=\pi r^{2}$; - Use $\pi \approx 3.142$ or use the π button on a calculator; - Give an answer to a question involving the circumference or area of a circle in terms of π; - Find radius or diameter, given area or perimeter of a circles; - Find the perimeters and areas of semicircles and quarter-circles;	

Mathematics Department

- Understand similarity of triangles and of other plane shapes, use this to make geometric inferences, and solve angle problems using similarity;
- Identify the scale factor of an enlargement of a shape as the ratio of the lengths of two corresponding sides;
- Understand the effect of enlargement on perimeter of shapes;
- Solve problems to find missing lengths in similar shapes;
- Know that scale diagrams, including bearings and maps are 'similar' to the real-life examples.

| Term | Topic | Assessment |
| :---: | :---: | :---: | :---: |

- Understand and use column notation in relation to vectors;
- Be able to represent information graphically given column vectors;
- Identify two column vectors which are parallel;
- Calculate using column vectors, and represent graphically, the sum of two vectors, the difference of two vectors and a scalar multiple of a vector.
- Know the difference between an equation and an identity and use and understand the \# symbol;
- Change the subject of a formula involving the use of square roots and squares;

Unit 20: Rearranging equations, graphs of cubic and reciprocal functions and simultaneous equations
Unit 19: Vectors

- Answer 'show that' questions using consecutive integers $(n, n+1)$, squares a^{2}, b^{2}, even numbers $2 n$, and odd numbers $2 n+1$;
- Solve problems involving inverse proportion using graphs, and read values from graphs;
- Find the equation of the line through two given points;
- Recognise, sketch and interpret graphs of simple cubic functions;
- Recognise, sketch and interpret graphs of the reciprocal function $y=\frac{1}{x}$ with $x \neq 0$;
- Use graphical representations of indirect proportion to solve problems in context;
- identify and interpret the gradient from an equation $a x+b y=c$;
- Write simultaneous equations to represent a situation;
- Solve simultaneous equations (linear/linear) algebraically and graphically;
- Solve simultaneous equations representing a real-life situation, graphically and algebraically, and interpret the solution in the context of the problem;

Exam dates:

Paper 1: 19 ${ }^{\text {th }}$ May 2023
Paper 2: $7^{\text {th }}$ June 2023
Paper 3: 14 ${ }^{\text {th }}$ June 2023

